
Page. 1 15-aug-15 ID070053-2 © Ideetron b.v. www.ideetron.nl

Summary

Sending data or information through wireless
connection is incomparable with sending signals
through such as a copper cable or a glass fibre
cable. The main reason for this is because of the
difference in properties of the physical layer.

The wireless transportation of raw data (which exists
out of ‘0’s and ‘1’s only) is practically impossible. In
order to create a wireless connection, which is close
to being flawless, you need to be aware of a lot of
qualities. This document describes the behaviour of
the physical EM layer and offers a bunch of
improvements for the wireless connection that can
be implemented in the microcontroller. Doing this
prevents disappointing test results.

The information provided in this document is merely
used as an example. This example provides
information and insights on how to produce a good,
running system.

Properties
Most, if not all, wireless signals are created through
emission of an electromagnetic pulse. Both radio
signals and light are known kinds of EM rays. This
type of physical layer acts differently than a copper
or glass fibre cable.

A signal cable usually exists out of 2 conductors.
These are separated from one another due to
isolation that is placed in between the conductors.
By creating a circuit and sending an electric current
through the conductors, the system can start
sending signals. The cable can be covered, to
protect it, and the entire system makes for a virtually
perfect connection. There are very few external
factors capable of influencing the signal and there is
almost a 100% guarantee it is going to get
transported. That means that a copper cable has a
very high availability. This availability is even higher
when a glass fibre cable is used.

Due to the fact that the connection is wireless, there
is no physical contact between the transmitter and
the receiver. This means we cannot send an electric
current. The medium we are using to send the
signal is nothing but air surrounding us. However,
even if it were to take place in a vacuum, the
emission of the EM rays would continue being
achievable. One of the compatible variables is the
frequency on which the channel is formed. External
factors are the cause of interferences and disable
the medium of transmitting the EM rays. Depending
on the frequency there is also the case of the
damped response being far too high for a signal to
be formed. The signal weakens during transmission
from the transmitter to the receiver. The physical

distance is too big or the transmitted signal is too
weak.

However, there are other factors involved. The
channel also gets used by other devices. One of the
frequencies that is often used is 433.93 MHz. That
frequency is a general license free channel used, for
example, for opening car doors. Every time either
you or your neighbour opens the car doors, a signal
gets transmitted on that frequency. There are plenty
of other disrupting factors. A lot of wireless sound
equipment use that same frequency, which results
in a continual interference. An availability of 95% on
this frequency makes for quite a pleasant result. A
wireless connection on such a general channel
often results in a very low availability.

Not a whole lot that can be done about these kinds
of interferences. It is unimaginable to try to protect
the medium, for it cannot be shielded or covered.
Yet this fact, that it is incapable of being protected,
is actually our biggest advantage. It enables us to
transmit a signal without having to place a cable
underneath or in your house.

To create a reliable wireless connection we need to
be aware of the qualities of the medium and our
own devices. The biggest hurdle is the
manufacturer’s demand concerning the range of the
transmitter/receiver. This demand is only achievable
in an ideal situation.

What is the right way of
dealing with interferences?

After this somewhat negative talk, regarding the
properties, it is time to look from the bright side and
offer some solutions. Thankfully there are enough
ways to create a reliable connection and to get rid of
unexpected interferences.

We are using a system which is built for the wireless
transportation of 4 bytes in a simplex transmission
system, as an example. In this case we are
assuming that the high frequency signal can be
processed by the receiver and is able to turn that
into a reasonably reliable connection (~95%).

Figure 1; Simplex transmision systeem

A Simple RF Data Link
Information and explanation to create a successful
wireless connection

Page. 2 15-aug-15 ID070053-2 © Ideetron b.v. www.ideetron.nl

Figure 1 shows how our simplex transmission
system is built. The data is sent from left to right.

Due to the system’s simplicity, we will not go into
details about the generation of the EM rays, the
modulation, reception of the EM rays and the
demodulation (reconstruction). The general
assumption is that after a working channel (=
working transmitter and receiver on the same
frequency) has been formed, data can be
transported. We have provided recommended
literature about modulation and the generation of
EM rays in the bibliography. You can find the
bibliography at the end of this document.

It comes down to this: The transmitter turns the data
into an AC current, with a high frequency and with
certain qualities (modulation), which makes it
possible for the receiver to simply reconstruct the
sent data. When the connection is sufficient, the
antenna of the transmitter turns the AC current into
EM rays. The receiver's antenna receives a small
part of these rays (energy) and turns them into an
AC current. The receiver can use this current to
reconstruct the sent data.

When sending data using a wireless connection it is
important to be aware of the fact that the receiver
cannot sense a difference between a favourable
and an unfavourable signal. After all, the physical
layer is not covered. This means that we will have to
apply an identification which enables the receiver to
differentiate between a favourable and an
unfavourable signal. In order to make this happen,
we will have to add some qualities to the physical
layer. By adding these resourceful qualities we can
optimize the wireless connection.

Expanding the selectivity

As stated before, the sole selectivity the frequency
has is a high frequency signal. However, this is not
really useful because that channel is accessible to
everyone.

Another way of avoiding interferences can be done
by making use of time intervals, instead of sending
a constant signal. In this case, transmitter is not
always activated. Quite the contrary actually. One of
the requirements necessary when using this
channel (433.92 MHz), is to make sure the
transmitter is only activated for a really short period.
The transmitter will only be activated for the amount
of time it takes to send the data. All the other
(interfering) transmitters do this as well.

The complete avoidance of interferences when
using a simplex connection (1 transmitter and 1
receiver) is not an easy task. To be able to use
Collission Avoidance, the transmitter has to be able
to evaluate the channel. The process can halt until
the channel is completely unused, by making use of
the data from the receiver.

The option to send data is nearly always available.
This can be done o.a. by making use of the Brute
Force method. This method includes the forcing of
the signal, regardless of whether the channel is

being used or not. By sending the data several
times, instead of once, the availability increases.
Even if the data is not received the first time around,
it will definitely be received during the second or
third transmission. This states that we are aware of
situations in which the data cannot be received and
that we might create interferences for other users of
this channel. It is up to you, the user, to make sure
all the information gets received. By activating the
connection for the shortest period there is a higher
chance of receiving all the information in one go and
creating fewer interferences for other users.

The Packet
Our next step is to increase the selectivity: by
adding information which enables the receiver to
differentiate between all the sent data. Once added,
our receiver will only receive information sent by our
transmitter. In order to make this happen, we will
wrap the data in a Frame of Packet, which has its
own unique qualities.

Figure 2, The packets lay-out

A single packet consists out of a header, the data
itself and a footer. The header exists out of
information which has been added for the sole
purpose of synchronizing the UART in the
microcontroller. The header very important when
using a wireless connection. Without it, it would be
practically impossible to transmit accurate data. The
UART cannot synchronize when it has access to the
data only. Without the header, the first few bytes will
most likely be missed, which is unfavourable when
you are trying to send a mere 4 bytes. You can
solve this problem by implementing a header that
consists out of at least 8 bytes.

The length of the header changes depending on
how much time it takes for UART to synchronize.
Sending data with a data rate of 2,4 kbit/s will most
likely have a shorter header than when a data rate
is 9,6 kbit/s is used. In theory, the header of the
data, that has a data rate of 9,6 kbit/s, should be
four times the length of the data with the data rate of
2,4 kbit/s. In reality, it is up to you to decide the
length of the header. Choosing the appropriate
length of the header can be done by running a
couple of tests. First of all, test to see what the
minimum length is keep the connection going.
Secondly, multiply this length times two. If the
system barely, but still, works when using 6 bytes;
the length of the header has to be 12 bytes.

The end of the header is declared with a separating
character, after which the data follows. The end of
the data is also declared with a separating
character. However, if the data has a stable length,
you do not need to use such a character. The footer
includes a final set of bits and possible a code; the
result of a calculation with locks in the data.

Page. 3 15-aug-15 ID070053-2 © Ideetron b.v. www.ideetron.nl

The selectivity has increased by adding unique
qualities to every bit of the packet’s information. In
turn this makes it virtually impossible for the
receiving microcontroller to recognize a different (a
signal you didn’t sent) signal as the favourable
signal.

The UART
The packet gets transmitted by sending a series of
bytes (8 bits) with the UART. A Universal
Asynchronous Receiver/Transmitter transmits the
sets of 8 bits, one for every byte, using a steady
signal. A singular start and one (or two) stop bit(s)
are added to each of the sets:

Figure 3, Output signaal of the UART

The packet is ready to be created due to the
implementation of the bytes (characters). In order to
make this happen, we use the ASCII (American
Standard Code for Information Interexchange) code.

A good example of a packet is this one:

SYN-SYN-SYN-SYN-SYN-SYN-SYN-SYN-STX-
DATA1-DATA2-DATA3-DATA4-ETX-EM

Something that is worth noticing is that, in order to
transport 4 bytes (DATA1 to DATA4), a total of 15
bytes (150 bits) need to be transmitted!

The transmitter should be activated approximately
50 ms before sending the first byte. The transmitter
uses this time to stabilize on the right output power
and frequency. The receiver uses this time in order
to respond and to switch the squelch circuit. To
prevent serious problems from occurring, this
amount of time should not be altered! A whopping
480 bits can be send in 50 ms, with a data rate of
9,6 kbit/s. We can transmit our packet thrice in that
amount of time!

It might also be a good idea, however this is not
compulsory, to keep the transmitter activated for
another 5ms after having sent the final byte. It is
often not possible to indicate, in the software, when
the last bit has been sent. That is why we
recommend the deactivation of the transmitter to
take place 5ms later. By doing this you are making
sure last byte is fully sent while the transmitter is still
activated.

Concluding, the transmission of 4 bytes of raw data
takes about 71 ms, with a data rate of 9,6 kbit/s (50
+ (150 x 9600^-1) + 5). With a data rate of 2,4
kbit/s, this period becomes about 118 ms, which is
still short period of time. After all, the shorter the
packet the bigger the chance it gets received as a
whole, by the receiver.

Extra protection
To protect the raw data even better against possible
errors we can add redundancy. Just like repeatedly
sending the complete packet it is also possible to
repeatedly send the data only. Our assumption in
this case is that the disrupting signals will not last for
too long. The header and the footer remain the
same. Note that this increases the length of the
packet and simultaneously the amount of time it
takes to send it.

Another kind of redundancy is an encryption. This
encryption's ability is to detect and correct bit errors.
Due to the simplex connection, the ability to only
detect mistakes is not that useful. After all, there is
no way of telling if the transmitter the packet needs
to send again.

A proper yet complex method of protecting data is
by adding a mechanism that detects and corrects
errors. This could be done with e.g. a FEC or BCH
code. This kind of protection encrypts the data and
adds extra bits to the packet.

It is but a question whether it is worth implementing
these software protection methods, especially since
errors and misuses of equipment, by other parties,
do not occur on a regular basis. All these methods
might be a bit too much when using, for example, a
simple Domotica system that is meant to turn a lamp
on and off. In that case, it is best to choose a
simpler protection method.

Software
It is up to you to create a beautiful system by writing
the correct software. To make sure the system is
universally compatible, a rather limited interface is
available and virtually every microcontroller can be
used. The amount of variables makes it impossible
for us to give examples of software code.

What we can do is suggest a global way of
programming. In this example we will use the
programming of the receiver.

The first step is to choose the right kind of
microcontroller. Pick a microcontroller which has
UART hardware implemented into it. The UART has
to be activated and configured to the correct
BAUDRATE and assembly. This configuration has
to be the same for both the transmitter and the
receiver.

The software works easiest on interrupts. The UART
transmits an interrupts after it has received a byte.
The ISR puts the byte on a free spot in a list and
increases a pointer. When a byte has not been
received 5 times in a row (a time-out), the ISR will
send a signal to the main loop to indicate a packet
has been received. The main loop will decode and
process the data afterwards.

The same can be achieved without the use of
interrupts. The UART puts the received byte on a
spot and puts a ‘byte received’ message on a fixed
place. This enables the possibility for the main loop

Page. 4 15-aug-15 ID070053-2 © Ideetron b.v. www.ideetron.nl

to easily detect whether a new byte has been
received. The polling frequency of the main loop has
to be higher than the set BAUDRATE.

After this the main loop can start evaluating the
series of received bytes. By adding a unique code to
the header of the packet, the main loop can easily
decide if the message is meant for this particular/our
receiver.

Addressing (when multiple receiving devices are
activated) is usually not fixed in the header. A better
suggestion for fixing this is to use (an) extra
databyte(s).

Protection
Ideetron can in no way be held responsible for
malfunctions and/or damage resulting from the
information presented in this document.

Author:

Ideetron b.v.
Tel: +31 (0) 343 769 094
e-mail: info@ideetron.nl
www.ideetron.nl

